

mai 2012

Exercice 1 6 points

Commun à tous les candidats.

Partie A

On considère la fonction g définie sur l'intervalle $]0; +\infty[$ par :

$$g(x) = 2x^3 - 1 + 2\ln x$$

1. Variations de la fonction g sur l'intervalle $]0; +\infty[$:

$$g'(x) = 6x^2 + \frac{2}{x} > 0$$
, car somme de nombres positifs sur $]0; +\infty[$

La fonction g est donc croissante sur $]0; +\infty[$.

Tableau de variations:

x	0	α	+∞
g'(x)		+	
g(x)	$-\infty$		+∞

2. La fonction g est continue (comme somme de fonctions continues) et strictement croissante sur $]0; +\infty[$. Elle réalise donc une bijection de $]0; +\infty[$ sur $]-\infty; +\infty[$.

Or $0 \in]-\infty$; $+\infty[$, 0 possède donc un unique antécédent, que l'on notera α . Nous avons donc $g(\alpha)=0$. De plus,

$$\begin{cases} g(0,86) \simeq -0.0295 < 0 \\ g(0,87) \simeq +0.0385 > 0 \end{cases} \implies g(0,86) < g(\alpha) = 0 < g(0,87) \Longleftrightarrow \boxed{0.86 < \alpha < 0.87}$$

3. Signe de la fonction g sur l'intervalle $]0; +\infty[$:

$$\begin{cases} 0 < x < \alpha \Longrightarrow g(x) < g(\alpha) = 0 \\ x > \alpha \Longrightarrow g(x) > g(\alpha) = 0 \end{cases}$$

Partie B

On considère la fonction f définie sur l'intervalle $]0; +\infty[$ par :

$$f(x) = 2x - \frac{\ln x}{x^2}$$

On note \mathscr{C} la courbe représentative de la fonction f dans le plan, muni d'un repère orthogonal $(0; \vec{t}; \vec{j})$.

1. • Limite de la fonction f en 0 :

$$\lim_{x \to 0^+} f(x) = +\infty, \text{ car } \lim_{x \to 0^+} 2x = 0 \text{ et } \lim_{x \to 0^+} -\ln x = +\infty \text{ et } \lim_{x \to 0^+} \frac{1}{x^2} = +\infty$$

• Limite de la fonction f en $+\infty$

$$\lim_{x \to +\infty} f(x) = +\infty \text{ car } \lim_{x \to +\infty} 2x = +\infty \text{ et } \lim_{x \to +\infty} \frac{\ln x}{x^2} = 0 \text{ (puissances comparées)}$$

2. La courbe \mathscr{C} admet pour asymptote oblique la droite Δ d'équation y = 2x.

En effet:

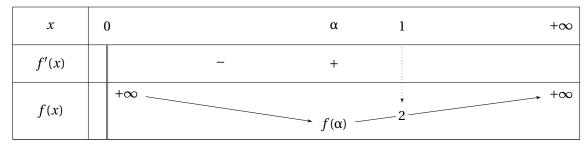
$$\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} \frac{\ln x}{x^2} = 0$$

- Le signe de $f(x) 2x = -\frac{\ln x}{x^2}$ est celui de $-\ln x$, car $x^2 > 0$:
- Position relative de la courbe \mathscr{C} et de la droite Δ :
 - Sur]0; 1[, $-\ln x > 0$, \mathscr{C} est au dessus de Δ ,
 - sur]1; $+\infty$ [, $-\ln x < 0$, \mathscr{C} est en dessous de Δ ,
 - \mathscr{C} et Δ ont un point commun A(1,2).
- 3. Dérivée f'(x) de f:

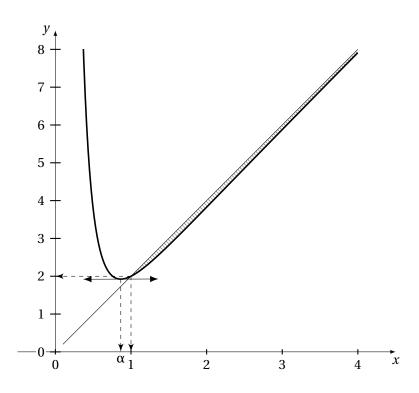
$$f'(x) = 2 - \frac{\frac{1}{x}x^2 - 2x\ln x}{x^4} = \frac{2x^4 - x + 2x\ln x}{x^4} = \frac{2x^3 - 1 + 2\ln x}{x^3} = \frac{g(x)}{x^3}$$

f'(x) a même signe que g(x) car x^3 est strictement positif sur $]0; +\infty[$.

4. Tableau de variations de la fonction f:



5. Figure:



Partie C

Soit n un entier naturel non nul. On considère l'aire du domaine \mathcal{D} du plan compris entre la courbe \mathcal{C} , la droite Δ et les droites d'équations respectives x = 1 et x = n.

1. Cette aire, exprimée en cm^2 , est donnée par (u.a; (unité d'aire)= $2cm^2$):

$$I_n = 2 \int_1^n \frac{\ln x}{x^2} \, \mathrm{d}x.$$

car l'aire du domaine \mathcal{D} du plan compris entre la courbe \mathcal{C} , la droite Δ et les droites d'équations respectives x = 1 et x = n est :

$$\int_{1}^{n} \left(2x - \left(2x - \frac{\ln x}{x^{2}} \right) \right) dx \times u.a. = \int_{1}^{n} \frac{\ln x}{x^{2}} dx \times u.a. = 2 \times \int_{1}^{n} \frac{\ln x}{x^{2}} dx = I_{n}$$

2. a) Calcul de l'intégrale $\int_1^n \frac{\ln x}{x^2} dx$ à l'aide d'une intégration par parties :

On pose:

$$u(x) = \ln x$$
 ; $u'(x) = \frac{1}{x}$
 $v'(x) = \frac{1}{x^2}$; $v(x) = -\frac{1}{x}$

Ainsi:

$$\int_{1}^{n} \frac{\ln x}{x^{2}} dx = \left[-\frac{\ln x}{x} \right]_{1}^{n} - \int_{1}^{n} -\frac{1}{x^{2}} dx = \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{n} = \frac{n - 1 - \ln n}{n}$$

b) Ainsi:

$$I_n = 2\frac{n - 1 - \ln n}{n} = 2 - \frac{2}{n} - \frac{2\ln n}{n}$$

3. $\lim_{n \to +\infty} I_n = 2$, car $\lim_{n \to +\infty} \frac{2}{n} = \lim_{n \to +\infty} \frac{2 \ln n}{n} = 0$

Exercice n° 2 4 points

Commun à tous les candidats.

1. Dans l'espace rapporté à un repère orthonormal $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$, on considère les droites \mathcal{D}_1 et \mathcal{D}_2 de représentations paramétriques respectives :

$$\begin{cases} x = 4+t \\ y = 6+2t , t \in \mathbb{R}, \text{ et } \begin{cases} x = 8+5t' \\ y = 2-2t' , t' \in \mathbb{R}. \end{cases} \\ z = 6+t' \end{cases}$$

On cherche le point d'intersection éventuel M(x; y; z) de ces deux droites :

$$\begin{cases} x = 4 + t = 8 + 5t' \\ y = 6 + 2t = 2 - 2t' \\ z = 4 - t = 6 + t' \end{cases} \implies \begin{cases} t - 5t' = 4 \\ 2t + 2t' = -4 \\ -t - t' = 2 \end{cases} \implies \begin{cases} t - 5t' = 4 \\ t + t' = -2 \end{cases} \implies \begin{cases} 6t' = -6 \\ t + t' = -2 \end{cases} \implies \begin{cases} t = -1 \\ t' = -1 \end{cases}$$

Les deux droites ont donc comme point commun M(4-1;6-2;4+1) = (3;4;5).

Affirmation : les droites \mathcal{D}_1 et \mathcal{D}_2 sont coplanaires.

2. Dans l'espace rapporté à un repère orthonormal $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$, on considère les points A(12;7; -13) et B(3;1;2) ainsi que le plan \mathscr{P} d'équation 3x + 2y - 5z = 1.

Le point B(3;1;2) appartient au plan \mathcal{P} , car $3 \times 3 + 2 \times 1 - 5 \times 2 = 1$.

Le vecteur $\overrightarrow{AB} \begin{pmatrix} -9 \\ -6 \\ 15 \end{pmatrix}$ est colinéaire à un vecteur normal du plan : $\overrightarrow{n} \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}$: $\overrightarrow{AB} = -3\overrightarrow{n}$.

Affirmation : le point B est le projeté orthogonal du point A sur le plan \mathcal{P} .

3. On considère les suites u et v définies, pour tout entier naturel n, par :

$$u_n = \frac{n+1}{n+2} \quad \text{et} \quad v_n = 2 + \frac{1}{n+2}$$

$$\lim_{n \to +\infty} (u_n - v_n) = \lim_{n \to +\infty} \frac{n}{n+2} - 2 = \lim_{n \to +\infty} \frac{n \times 1}{n\left(1 + \frac{2}{n}\right)} - 2 = -1 \neq 0$$

Affirmation: ces deux suites ne sont pas adjacentes.

4. On considère la suite u définie par son premier terme $u_0 = 1$ et la relation de récurrence :

$$u_{n+1} = \frac{1}{3}u_n + 2$$
, pour tout entiernaturel n .

Démonstration par récurrence :

- $u_0 = 1 < 3$
- Supposons que pour tout n, on ait : $u_n \le 3$

$$u_n \le 3 \Longrightarrow \frac{1}{3}u_n \le 1 \Longrightarrow u_{n+1} = \frac{1}{3}u_n + 2 \le 3$$

• Ainsi, pour tout entier naturel n, on a $u_n \le 3$

Affirmation: cette suite est majorée par 3.

Exercice n° 3 5 points

Commun à tous les candidats.

On dispose de deux urnes U_1 et U_2 .

L'une U₁ contient 4 jetons numérotés de 1 à 4.

L'urne U₂ contient 4 boules blanches et 6 boules noires.

Un jeu consiste à tirer un jeton de l'urne U_1 , à noter son numéro, puis à tirer simultanément de l'urne U_2 le nombre de boules indiqué par le jeton.

On considère les événements suivants :

J₁ « le jeton tiré de l'urne U₁ porte le numéro 1 »

 J_2 « le jeton tiré de l'urne U_1 porte le numéro 2 »

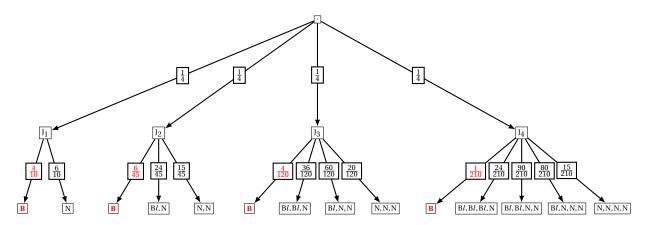
J₃ « le jeton tiré de l'urne U₁ porte le numéro 3 »

J₄ « le jeton tiré de l'urne U₁ porte le numéro 4 »

B « toutes les boules tirées de l'urne U2 sont blanches »

On donnera tous les résultats sous la forme d'une fraction irréductible sauf dans la question **4.b**) où une valeur arrondie à 10^{-2} suffit.

Arbre complet, mais non demandé.



1. Probabilité de l'événement B sachant que l'événement J₁ est réalisé :

$$P_{J_1}(B) = \frac{\binom{4}{1}}{\binom{10}{1}} = \frac{4}{10} = \frac{2}{5}$$

De même la probabilité P_{J2}(B) est :

$$P_{J_2}(B) = \frac{\binom{4}{2}}{\binom{10}{2}} = \frac{6}{45} = \frac{2}{15}$$

Et:

$$P_{J_3}(B) = \frac{\binom{4}{3}}{\binom{10}{3}} = \frac{4}{120} = \frac{1}{30} \quad \text{et} \quad P_{J_4}(B) = \frac{\binom{4}{4}}{\binom{10}{4}} = \frac{1}{210}$$

2. Calcul de P(B), probabilité de l'événement B:

$$\begin{split} P(B) &= P(B \cap J_1) + P(B \cap J_2) + P(B \cap J_3) + P(B \cap J_4) = P_{J_1}(B) \times P(J_1) + P_{J_2}(B) \times P(J_2) + P_{J_3}(B) \times P(J_3) + P_{J_4}(B) \times P(J_4) \\ &= \frac{2}{5} \times \frac{1}{4} + \frac{2}{15} \times \frac{1}{4} + \frac{1}{30} \times \frac{1}{4} + \frac{1}{210} \times \frac{1}{4} = \frac{1}{4} \left(\frac{84 + 28 + 7 + 1}{210} \right) = \frac{1}{7} \end{split}$$

3. On dit à un joueur que toutes les boules qu'il a tirées sont blanches. La probabilité que le jeton tiré porte le numéro 3 correspond à $P_B(J_3)$

$$P_{B}(J_{3}) = \frac{P(B \cap J_{3})}{P(B)} = \frac{P_{J_{3}}(B) \times P(J_{3})}{P(B)} = \frac{\frac{1}{30} \times \frac{1}{4}}{\frac{1}{7}} = \frac{7}{120}$$

- 4. On joue 10 fois de suite à ce jeu. Chacune des parties est indépendante des précédentes. On note N la variable aléatoire prenant comme valeur le nombre de partie où toutes les boules tirées sont blanches.
 - a) La loi suivie par la variable aléatoire N est une loi binomiale de paramètre n = 10 et $p = P(B) = \frac{1}{7}$.
 - b) Probabilité de l'événement (N = 3) :

$$P(N=3) = {10 \choose 3} \left(\frac{1}{7}\right)^3 \left(\frac{6}{7}\right)^7 = 120 \times \frac{6^7}{7^{10}} \approx 0,12$$

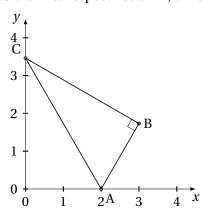
Exercice nº 4 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité.

On se place dans le plan complexe muni d'un repère orthonormal direct $(O; \vec{u}; \vec{v})$.

1. Un triangle

a) On considère les points A, B et C d'affixes respectives a=2, $b=3+i\sqrt{3}$ et $c=2i\sqrt{3}$.



Mesure de l'angle ABC :

$$(\overrightarrow{BC}; \overrightarrow{BA}) = \operatorname{Arg}\left(\frac{a-b}{c-b}\right) = \operatorname{Arg}\left(\frac{-1-\mathrm{i}\sqrt{3}}{-3+\mathrm{i}\sqrt{3}}\right) = \operatorname{Arg}\left(\frac{\left(1+\mathrm{i}\sqrt{3}\right)\left(3+\mathrm{i}\sqrt{3}\right)}{\left(3-\mathrm{i}\sqrt{3}\right)\left(3+\mathrm{i}\sqrt{3}\right)}\right) = \operatorname{Arg}\frac{\sqrt{3}}{3}\mathbf{i} = \frac{\pi}{2} + 2k\pi \quad (k \in \mathbb{R})$$

b) ABC est donc un triangle rectangle en B. Le centre du cercle circonscrit à ce triangle est donc le milieu Ω de l'hypoténuse [AC]. Ainsi :

$$\omega = \frac{a+c}{2} = \frac{2+2i\sqrt{3}}{2} = 1+i\sqrt{3}$$

2. Une transformation du plan

On note (z_n) la suite de nombres complexes, de terme initiale $z_0 = 0$, et telle que :

$$z_{n+1} = \frac{1 + i\sqrt{3}}{2}z_n + 2$$
, pour tout entier naturel n .

Pour tout entier naturel n, on note A_n le point d'affixe z_n .

a) Calculs des affixes des points A2, A3 et A4:

$$z_1 = \frac{1 + i\sqrt{3}}{2} z_0 + 2 = 2 = a \quad ; \quad z_2 = \frac{1 + i\sqrt{3}}{2} z_1 + 2 = 3 + i\sqrt{3} = b$$

$$z_3 = \frac{1 + i\sqrt{3}}{2} z_2 + 2 = 2 + 2i\sqrt{3} \quad ; \quad z_4 = \frac{1 + i\sqrt{3}}{2} z_3 + 2 = 2i\sqrt{3} = c$$

On remarque que : $A_1 = A$, $A_2 = B$ et $A_4 = C$.

b) Longueurs des segments $[A_1A_2]$, $[A_2A_3]$ et $[A_3A_4]$:

$$A_{1}A_{2} = |b - a| = \left| 1 + i\sqrt{3} \right| = \sqrt{1^{2} + \sqrt{3}^{2}} = 2 \quad ; \quad A_{2}A_{3} = \left| 2 + 2i\sqrt{3} - \left(3 + i\sqrt{3} \right) \right| = \left| -1 + i\sqrt{3} \right| = 2$$

$$A_{3}A_{4} = \left| 2i\sqrt{3} - \left(2 + 2i\sqrt{3} \right) \right| = 2$$

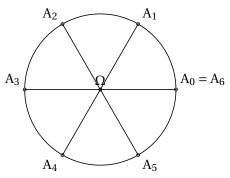
c) Pour tout entier naturel *n*, on a :

$$z_{n+1} - \omega = \frac{1 + i\sqrt{3}}{2} z_n + 2 - 1 - i\sqrt{3} = \frac{1 + i\sqrt{3}}{2} z_n + 1 - i\sqrt{3}$$
$$= \frac{1 + i\sqrt{3}}{2} \left(z_n + \frac{2(1 - i\sqrt{3})}{1 + i\sqrt{3}} \right) = \frac{1 + i\sqrt{3}}{2} \left(z_n + 2 \frac{-2 - 2i\sqrt{3}}{4} \right) = \frac{1 + i\sqrt{3}}{2} (z_n - \omega)$$

d) Le point A_{n+1} est l'image du point A_n par une rotation de centre Ω et d'angle $\frac{\pi}{3}$:

$$z_{n+1} - \omega = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(z_n - \omega) = e^{\frac{\pi}{3}}(z_n - \omega)$$

e) Justifier que, pour tout entier naturel n, on a : $A_{n+6} = A_n$. Déterminer l'affixe du point A_{2012} .



La composée de deux rotations de même centre Ω et d'angle α et β donne une rotation de centre Ω et d'angle $\alpha + \beta$.

Donc, si l'on compose six fois la même rotation d'angle $\frac{\pi}{3}$ à un point, on obtient la rotation de même centre et d'angle $6 \times \frac{\pi}{3} = 2\pi$, c'est-à- dire l'identité.

Affixe du point A_{2012} est $b = 3 + i\sqrt{3}$:

3. Le triangle $\Omega A_n A_{n+1}$ est un triangle équilatéral (isocèle de sommet Ω et d'angle au sommet $\frac{\pi}{3}$). Ainsi la longueur du segment $[A_n A_{n+1}]$ est la même que celle du segment $[\Omega A_n]$.

Comme A_n est l'image de A_0 par la rotation de centre Ω et d'angle $n \times \frac{\pi}{3}$, on a

$$\Omega \mathbf{A}_n = \Omega \mathbf{A}_0 = \left| 0 - 1 - \mathbf{i}\sqrt{3} \right| = 2$$

Exercice nº 4 5 points

Candidats ayant suivi l'enseignement de spécialité.

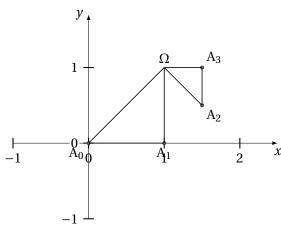
On se place dans le plan complexe muni d'un repère orthonormal direct (O; \vec{u} ; \vec{v}). On note z_n la suite de nombres complexes, de terme initiale $z_0 = 0$, et telle que :

$$z_{n+1} = \frac{1+i}{2}z_n + 1$$
, pour tout entier naturel n .

Pour tout entier naturel n, on note A_n le point d'affixe z_n .

1. Calculs des affixes des points A_1 , A_2 et A_3 .

$$z_1 = \frac{1+\mathrm{i}}{2} z_0 + 1 = 1 \; ; \; z_2 = \frac{1+\mathrm{i}}{2} z_1 + 1 = \frac{3+\mathrm{i}}{2} \; ; \; z_3 = \frac{1+\mathrm{i}}{2} z_2 + 1 = \frac{3+2\mathrm{i}}{2}$$



2. a) Le point A_{n+1} est l'image du point A_n par une similitude directe s:

 z_{n+1} est de la forme $az_n + b$, où a et b sont deux nombres complexes ($a \ne 0$. Donc, A_{n+1} est l'image de A_n par une similitude directe s.

- Son rapport est: $k = |a| = \left| \frac{1+i}{2} \right| = \frac{\sqrt{2}}{2}$;
- son angle est $\theta = \text{Arg}\left(\frac{1+1}{2}\right) = \frac{\pi}{4} + 2k\pi$; (parties réelle et imaginaire égales)
- son centre est le point fixe de la transformation $(s(\omega) = \omega)$:

$$\omega = \frac{1+i}{2}\omega + 1 \Longleftrightarrow \omega \left(1 - \frac{1+i}{2}\right) = 1 \Longleftrightarrow \omega \left(\frac{1-i}{2}\right) = 1 \Longleftrightarrow \omega = \frac{2}{1-i} = \frac{2(1+i)}{2} = 1+i$$

b) Le triangle $\Omega A_n A_{n+1}$ est isocèle rectangle :

Une similitude directe conserve les angles orientés, Ω est invariant, donc :

$$(\overrightarrow{\Omega A_{n+1}}; \overrightarrow{A_n A_{n+1}}) = (\overrightarrow{\Omega A_n}; \overrightarrow{A_{n-1} A_n}) = \cdots = (\overrightarrow{\Omega A_1}; \overrightarrow{A_0 A_1})$$

Or

$$(\overrightarrow{\Omega A_1}; \overrightarrow{A_0 A_1}) = Arg\left(\frac{z_1 - z_0}{z_1 - \omega}\right) = Arg\left(\frac{1}{-i}\right) = \frac{\pi}{2} + 2k\pi$$

Le triangle $\Omega A_n A_{n+1}$ est donc rectangle. De plus

$$\left(\overrightarrow{\Omega A_n}; \overrightarrow{\Omega A_{n+1}}\right) = \theta = \frac{\pi}{4} + 2k\pi$$

Le triangle $\Omega A_n A_{n+1}$ est donc rectangle isocèle.

a) Pour tout entier naturel n, on a : $\Omega A_n = \left(\frac{\sqrt{2}}{2}\right)^{n-1}$:

Le rapport de s est $\frac{\sqrt{2}}{2}$, ce qui signifie que $\Omega A_{n+1} = \frac{\sqrt{2}}{2} \Omega A_n$.

La suite de terme général ΩA_n est une suite géométrique

- de raison $\frac{\sqrt{2}}{2}$
- et de premier terme $\Omega A_0 = |\omega| = |1+i| = \sqrt{2}$.

$$\Omega A_n = \Omega A_0 \times \left(\frac{\sqrt{2}}{2}\right)^n = \sqrt{2} \times \left(\frac{\sqrt{2}}{2}\right)^n = \left(\frac{\sqrt{2}}{2}\right)^{n-1}$$

b) À partir de n = 21 les points A_n sont situés à l'intérieur du disque de centre Ω et de rayon 0,001 :

$$\Omega \mathsf{A}_n \leq 0,001 \Longleftrightarrow \left(\frac{\sqrt{2}}{2}\right)^{n-1} \leq 0,001 \Longleftrightarrow (n-1)\ln\left(\frac{\sqrt{2}}{2}\right) \leq \ln(0,001) \Longleftrightarrow n \geq 1 + \frac{\ln(0,001)}{\ln\left(\frac{\sqrt{2}}{2}\right)} \simeq 20,9$$

Il y a changement de sens de l'inégalité car on divise de chaque côté par $\ln\left(\frac{\sqrt{2}}{2}\right)$ qui est négatif.

4. Pour tout entier naturel n, on note a_n la longueur A_nA_{n+1} et L_n la somme $\sum_{k=1}^{n} a_k$.

 L_n est ainsi la longueur de la ligne polygonal $A_0A_1 \cdots A_nA_{n+1}$.

• Calcul de L_n : Comme le triangle $\Omega A_n A_{n+1}$ est rectangle isocèle en A_{n+1} , on a

$$a_n = A_n A_{n+1} = \Omega A_{n+1} = \left(\frac{\sqrt{2}}{2}\right)^n$$

Ainsi:

$$L_n = \sum_{i=0}^{n} a_i = \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}}{1 - \frac{\sqrt{2}}{2}}$$

• Limite de L_n quand n tend vers $+\infty$:

Nous avons
$$0 < \frac{\sqrt{2}}{2} < 1$$
, donc $\lim_{n \to +\infty} \left(\frac{\sqrt{2}}{2} \right)^n = 0$.

Ainsi:

$$\lim_{n \to +\infty} L_n = \frac{1}{1 - \frac{\sqrt{2}}{2}} = 2 + \sqrt{2}$$

5. Pour tout entier naturel n, les points A_n , Ω et A_{n+4} sont alignés :

$$\begin{split} \left(\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n}};\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n+4}}\right) &= \left(\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n}};\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n+1}}\right) + \left(\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n+1}};\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n+2}}\right) + \left(\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n+2}};\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n+3}}\right) + \left(\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n+3}};\overrightarrow{\Omega}\overrightarrow{\mathbf{A}_{n+4}}\right) \\ &= \frac{\pi}{4} + \frac{\pi}{4} + \frac{\pi}{4} + \frac{\pi}{4} + 2k\pi = \pi + 2k\pi \end{split}$$